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2 Institut de Physique Nucléaire, CNRS/Univ. Paris-Sud 11 (UMR 8608), 91406 Orsay Cedex, France

Received: 13 July 2006 / Revised version: 8 August 2006 /
Published online: 17 November 2006 − © Springer-Verlag / Società Italiana di Fisica 2006

Abstract. We discuss the existence of the light scalar meson K∗0 (800) (also called κ) in a rigorous way, by
showing the presence of a pole in the πK→ πK amplitude on the second Riemann sheet. For this pur-
pose, we study the domain of validity of two classes of Roy–Steiner representations in the complex energy
plane. We prove that one of them is valid in a region sufficiently broad in the imaginary direction. From
this representation, we compute the l= 0 partial wave in the complex plane neither making any additional
approximation nor having model dependence, relying only on experimental data. A scalar resonance with
strangeness S = 1 is found with the following mass and width:Mκ = 658±13MeV and Γκ = 557±24 MeV.

One striking aspect of hadron spectroscopy is the extreme
scarcity of exotics, i.e., states which fail to be understood
as either QQ or QQQ in the naive quark model. It is
only recently that several such mesons have been unam-
biguously identified in the heavy quark sector (e.g. [1, 2]).
While these are very narrow states, one expects from large-
Nc considerations [3] that many exotic mesons, on the con-
trary, should be rather wide, which makes them difficult to
be singled out experimentally. From the theoretical point
of view, resonances can be defined in a robust and process-
independent way, without assumptions on the value of the
width, as a pole in the S matrix on the second Riemann
sheet with respect to the elastic cut (e.g. [4]). In order to
locate wide resonances in a reliable way, one must deter-
mine the value of S matrix elements in the complex energy
plane, which requires a careful exploitation of the analytic-
ity properties in association with the available experimen-
tal data.
In the light quark sector, the scalar mesons lighter

than 1 GeV have been suspected to be exotics for a long
time [5]. In this context, it is important to confirm the
existence of the lightest ones, namely the f0(600) with
strangeness S = 0 and the K∗0 (800) with S = 1, also fa-
miliarly called σ and κ. New indications on the pres-
ence of these resonances have been reported based on the
data of the E791 [6, 7] and BES collaborations [8] (see
also [9–11]) concerning the decaysD+→ π−π+π+, D+→
K−π+π+ and J/Ψ → π+π−ω, J/Ψ → K+π−K+π−, re-
spectively. Conclusions were drawn from fits to the cor-
responding Dalitz plots with Breit–Wigner-like parametri-
sations. In such parametrisations, however, the presence
of a pole is assumed from the start and the description
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of the amplitude in the complex plane is afflicted by well-
known blemishes (spurious poles, absence of left-hand
cuts . . . ). In this paper, we address the question of the
existence of a pole corresponding to the K∗0 (800) with-
out relying on such approximations. Should this pole
exist, then one ought to be able to locate it in the am-
plitudes for D or J/Ψ decays as well as in the amplitude
for elastic πK scattering. Recently, the existence of the
σ meson has been confirmed in the ππ scattering ampli-
tude and its mass and width have been determined quite
accurately [12] and we are following the same kind of
method.
The elastic ππ and πK scattering amplitudes enjoy

rather unique properties because pions and kaons are the
lightest particles in the QCD spectrum. The analytic struc-
ture of the amplitudes is simple, free from anomalous
thresholds, and elastic unitarity holds in both direct and
crossed channels in the low-energy region. An additional
useful property of the S matrix element for elastic scatter-
ing is that a resonance manifests itself not only as a pole on
the second Riemann sheet, but also as a zero on the first
sheet.
Earlier works performing extrapolations of the πK

scattering amplitude in the complex plane have often re-
lied on approximations and sometimes involved model-
dependent hypotheses. Cherry and Pennington [13] have
used a method based on conformal mapping and and on a
stabilised fit to the data [14, 15]. Ignoring the contributions
from the left-hand cuts, they were inconclusive about the
presence of a pole with Re (M) < 0.83GeV but ruled out
a pole at higher mass. Their result apparently contradicts
the earlier claim by Ishida et al. [16] who, using a naive
Breit–Wigner parametrisation of the πK scattering data,
found a pole with Re (M) � 0.88GeV. In [17, 18] a novel
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dispersive representation of the partial wave S matrix was
developed, which also satisfies the elastic unitarity relation
at low energy by construction. An approximation made by
these authors consists in using chiral perturbation theory
(ChPT) at order p4 in order to compute the discontinuities
along the left-hand cuts (we will comment on the validity of
this approximation in Sect. 1.3). This dispersive construc-
tion does yield a κ resonance pole in the S matrix. Models
for the scattering amplitudes of pseudoscalar mesons have
been proposed by starting from their chiral expansions at
leading or next-to-leading order, later improved by apply-
ing a unitarisation ansatz (see e.g. [19] for a recent review
of this subject). TheK∗0 (800) resonance has been discussed
within this framework in [20–22]. Arguments based on uni-
tarity bounds applied to a tree-level construction of the
amplitude have been proposed in [24].
In this paper, we will show that the existence of the

K∗0 (800), corresponding to a pole in the S matrix, can be
established using (a) the available experimental data and
(b) general properties of analyticity, unitarity and crossing
symmetry of two-body scattering amplitudes.
We will rely on dispersive representations of the Roy–

Steiner (RS) type [25, 26] for the I = 1
2 πK S-wave ampli-

tude without performing any further approximation. In
this approach, the unitarity condition on the real axis (be-
low the inelastic threshold) is not automatically satisfied.
It is rather implemented as an equation which must be
solved together with those arising from the dispersive rep-
resentation and from the boundary conditions. This pro-
cedure yields the phase shifts in the energy region below
smatch � 1 GeV2. More precisely, in this energy range where
elastic unitarity is assumed to hold to a high precision, a set
of six equations is derived, involving πK → πK and ππ→
KK partial waves with l = 0, 1. The higher partial waves
(l ≥ 2) and the values for higher energies s≥ smatch must
be provided as input. These equations were re-analysed
recently in [27] using all the available data from high-
statistics experiments [28–31] (earlier work can be found
in [32, 33]). Dispersive representations of scattering ampli-
tudes have a limited range of validity, and it is important
to check whether the putative resonance falls within this
domain. We will discuss this point in some detail below. It
will turn out that the particular form of RS representation
which was considered in [27] on the real energy axis is not
valid in a sufficiently large domain in the complex energy
plane. A variant will be shown to be adequate, and we will
discuss the existence, position and features of theK∗0 (800)
pole in this context.

1 Two Roy–Steiner representations of πK
scattering and their domains of validity

1.1 Fixed-t representation

πK scattering is described by two different amplitudes,
F+(s, t) and F−(s, t), which are even and odd respectively
under s–u exchange (s, t, u being the standard Mandel-
stam variables). We first start with the representation pro-
posed in [27]. Since the discussion is identical for the two

amplitudes, we focus on F+ and write a dispersion rela-
tion at fixed t with two subtractions (as required from the
Froissart bound):

F+(s, t) = c+(t)+
1

π

∫ ∞
m2+

ds′

×

[
1

s′− s
+
1

s′−u
−
2s′−2Σ− t

λs′

]
Im sF

+(s′, t) , (1)

with

m± =mK±mπ , Σ =m
2
K +m

2
π ,

λs′ = (s
′−m2+)(s

′−m2−) , (2)

and Im s denotes the discontinuity along the s cut di-
vided by 2i. From the LSZ formula [34], the representa-
tion (1) can be shown to be valid in a finite region of t
in a rigorous way [35–37]. The range of validity is deter-
mined by the possibility to define the discontinuity func-
tion Im sF

+(s′, t) in the whole integration region of s′

through the partial wave expansion

Im sF
+(s′, t)≡ 16π

∑
l

(2l+1) Im sf
+
l (s

′)Pl(z(s
′, t)) ,

(3)

where the argument of the Legendre polynomial is given by

z(s′, t) = 1+
2s′t

λs′
. (4)

As shown by Lehmann [38], the series of Legendre polyno-
mials (3) converges when z(s′, t) lies inside an ellipse whose
focal points are located at z(s′, t) =±1 and whose bound-
ary touches the nearest singularity of Im sF

+(s′, t).
We assume that the scattering amplitude satisfies Man-

delstam’s double spectral representation [39], so that the
nearest singularity is given by the boundary of the support
of the double spectral functions ρst, ρus. We recall that
these boundaries are generated by considering the light-
est contributions in the unitarity relations. For instance,
in the case of πK scattering, the st boundary comes from
the contributions illustrated in Fig. 1. It may be written as
t= Tst(s) with

1

Tst(s) = 16m
2
π+

64m4πs

(s− (mK−mπ)2) (s− (mK+mπ)2)

when s≤ s0 ,

Tst(s) = 4m
2
π+

32m3π(mK +mπ)

(s− (mK+3mπ)2)
when s≥ s0 , (5)

with s0 =m
2
K+4mKmπ+5m

2
π+2mπ(5m

2
K+12mKmπ+

8m2π)
1
2 .

1 The formulae given in [27] correspond to pion–nucleon scat-
tering with mN simply replaced by mK , which is incorrect.
Using the right expressions yields only small numerical modifi-
cations to the domains of validity on the real axis quoted in [27].
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Fig. 1.Diagrams show-
ing the contributions
of the lightest particles
in the s-channel and
the t-channel unitar-
ity relations for the
πK scattering ampli-
tude. Dashed lines cor-
respond to π mesons,
whereas solid lines rep-
resent K mesons

The expression for the boundary associated with the us
spectral function can be put in the form t= Tus(s) with

Tus(s) =
−16m2πm

2
+

s− (mK+mπ)2
− s+m+(mK −7mπ)

when s≤ s0 ,

Tus(s) =
−16m2πm

2
+

s− (mK+3mπ)2
− s+(mK−mπ)

2

when s≥ s0 . (6)

In the complex t-plane, the dispersive representation (1) is
restricted by the st double spectral function to a domain
of validity with the following boundary, expressed in polar
coordinates:

T (θ) = min
m2+≤s

′≤∞
Ts′(θ)

with Ts′(θ) =
Tst(s

′) (λs′ + s
′Tst(s

′))

λs′ cos2
θ
2 + s

′Tst(s′)
. (7)

A RS representation is generated by projecting (1) on the
l = 0 partial wave,

f+0 (s) =
s

16πλs

∫ 0
−λss

dtF+(s, t) . (8)

This projection can be performed only if the segment of
integration remains inside the region of validity (7). The
boundary of the domain of validity of the RS represen-
tation in the s-plane is therefore obtained, in parametric
form, by solving

λs+ sT (θ) exp(iθ) = 0 . (9)

The result is displayed in Fig. 2 where the two cuts
along the real axis as well as the circular cut of the partial
wave amplitude are also drawn. As can be seen on this fig-
ure, the validity region of the Roy–Steiner representation
based on fixed-t dispersion relation gets squeezed when
Re (s) is close to the πK threshold, which makes it a priori
unfit to search for a wide resonance like the κ.

Fig. 2. Domain of validity of the Roy–Steiner representation
based on fixed-t dispersion relation. The energy variable s is
expressed in units of m2π+

1.2 Fixed-us representation

Let us now investigate a second kind of dispersion relation,
sometimes called hyperbolic, in which the product us is
kept fixed [27]. Setting us= b, we get a representation for
F+(s, t) of the following form:

F+(s, tb(s)) = f
+(b)+ tb(s)h

+(b)

+
1

π

∫ ∞
m2+

ds′
[
2s′−2Σ+ tb(s)

(s′− s)(s′− b/s)
−
2s′−2Σ− tb(s)

s′2−2Σs′+ b

]

× Im sF
+(s′, tb(s

′))

+
tb(s)

2

π

∫ ∞
4m2π

dt′

t′2(t′− tb(s))
Im tF

+(s′b(t
′), t′) ,

(10)

tb(s) = 2Σ− s−
b

s
,

s′b(t
′) =

1

2

(
2Σ− t′+

√
(2Σ− t′)2−4b

)
. (11)

Expanding the discontinuities in partial waves and pro-
jecting the whole representation on the l = 0 partial wave
yields a RS representation which we denote RSb and
which is different from the fixed-t representation consid-
ered earlier.
Let us now consider the domain of validity of this

new representation. We must ensure that the discontinuity
functions Im sF

+(s′, tb(s
′)) and Im tF

+(s′b(t
′), t′) are de-

fined inside the s′ and the t′ integration ranges, once these
functions are expanded on πK → πK and ππ→KK par-
tial waves respectively. As done before, we consider each
Mandelstam boundary (st and us) and we determine the
region for the parameter b inside which the representa-
tion (10) is valid. Let us denote by B(θ) the description
(in polar coordinates) for the boundary of such a region.
The S-wave component of this representation is then taken
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Fig. 3. Domains of validity associated with the s′ and t′ inte-
grals in the fixed-us representation (10) and resulting from the
conditions that the Lehmann ellipses do not touch the st or the
usMandelstam boundaries

through

f+0 (s) =
1

16πλs

∫ (2Σ−s)s
∆2

db F+
(
s, 2Σ− s−

b

s

)
.

(12)

The segment of integration (i.e., its end at (2Σ−s)s) must
remain within the region of validity in b, so that the bound-
ary in the s-plane for the RSb representation is obtained as
a solution to

s2−2Σs+B(θ) exp(iθ) = 0 . (13)

The domains of validity which result from the consid-
eration of the s′ and t′ integrals are shown in Fig. 3. In
the case of the t′ integral, the st Mandelstam boundary is
the only one relevant. In the case of the s′ integral, one
must consider both the us and the st Mandelstam bound-
aries. The last domain is included into all the others and
therefore defines the region in the complex plane where the
RSb representation is valid. The shape of this domain is
quite different from Fig. 2 corresponding to the fixed-t RS
representation. The latter one exhibits a more extended va-
lidity along the real axis, whereas the former is significantly
broader along the imaginary direction. Indeed, the domain
of validity for RSb extends up to Im (s)� 0.39GeV2 when
Re (s) is close to the threshold, which will turn out to be
sufficient for theK∗0 (800) resonance.

1.3 The RSb representation of the scalar partial wave

Let us give more details on the representation of the f
1/2
0

partial wave. The functions f+(b) and h+(b) which appear
in (10) have been determined in [27]. Carrying out the pro-
jection of the amplitudes F+ and F− in the form (10), we

obtain the πK→ πK amplitude of isospin I = 1/2 for the
partial wave l = 0,

f
1
2
0 (s) =

1

2
m+a

1
2
0 +

1

12
m+

(
a
1
2
0 −a

3
2
0

)

×

(
s−m2+

) (
5s+3m2−

)
(
m2+−m

2
−

)
s

+
1

π

∫ ∞
m2+

ds′
∞∑
l=0

×
{
K
1
2
0l(s, s

′) Im f
1
2
l (s

′)

+K
3
2
0l(s, s

′) Im f
3
2
l (s

′)
}

+
1

π

∫ ∞
4m2π

dt′
∞∑
l=0

×
{
K002l(s, t

′) Im g02l(t
′)

+K102l+1(s, t
′) Im g12l+1(t

′)
}
, (14)

where the aI0 denote the scattering lengths. This is the key
expression which will enable us to compute the amplitude
f
1/2
0 (s) for complex values of s. The first few of the kernels
which act on the πK→ πK partial waves f Il (s

′) read

K
1
2
00(s, s

′) =
1

s′− s
−
1

3
L(s, s′)−

4s(s′+2s−3Σ)−3λs
6sλs′

,

K
1
2
01(s, s

′) =

(
1+
2(ss′−∆2)

λs′

)
L(s, s′)

−
2s(s′+ s)+3λs

2sλs′
,

K
3
2
00(s, s

′) =
4

3
L(s, s′)−

8s(s′− s)+3λs
6sλs′

, (15)

with

L(s, s′) =
s

λs

(
log(s′+ s−2Σ)− log

(
s′−
∆2

s

))
,

(16)

and

∆=m2K−m
2
π , Σ =m

2
K +m

2
π . (17)

We quote a few of the kernels which act on the ππ→KK
partial waves gIl (t

′):

K000(s, t
′) =

1
√
3

{
L̂(s, t′)−

1

t′

}
,

K101(s, t
′) =

3
√
2

4

{
(2s−2Σ+ t′)L̂(s, t′)

+
−5s2+2Σs+3∆2

4t′s
−1

}
, (18)

with

L̂(s, t′) =
s

λs
log

(
1+
λs

st′

)
. (19)

A few comments are in order at this point. First, in the for-
mula (14), the integrands are evaluated using the descrip-
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tion of πK scattering (and its crossed channel) along the
real axis obtained by solving Roy–Steiner equations [27].
More precisely, whenever the integration variables s′,

t′ are larger than approximately 1 GeV2, the imaginary
parts Im f Il (s

′), Im gIl (t
′) are taken from fits to the ex-

perimental data (see [27] for more details). In practice,
experimental information is available for values of l up to
l= 5 and in a range of energies up to s′max � t

′
max � 6 GeV

2.
The integrals involved here converge quickly and we re-
strict ourselves to values of s such that |s| � 1 GeV2. We
can conclude that we only need qualitative estimates for
the imaginary parts in the higher integration region. For
this purpose, the simple Regge pole models used in [27] are
appropriate.
In the lower parts of the integration ranges, Im f Il (s

′),
Im gIl (t

′) with l = 0, 1 are taken from the solutions of the

RS equations computed in [27]. The scattering lengths a
1/2
0

and a
3/2
0 were also obtained from these solutions:

a
1
2
0 = (0.224±0.022)m

−1
π ,

a
3
2
0 = (−0.448±0.077)10

−1m−1π . (20)

When s is on the real axis with m2+ ≤ s≤ smatch, we have
verified that f Il (s) with l = 0, 1 as given from the RSb rep-
resentation do satisfy the unitarity relation to a good ap-
proximation. In other terms, these amplitudes satisfy both
the RS and the RSb equations.
A second point should also be emphasised. The discon-

tinuities of the amplitude f
1/2
0 (s) are generated from the

pole 1/(s′− s) and from the logarithmic functions L(s, s′)
and L̂(s, t′) present in the kernels. For illustration, let us
consider the discontinuity along the circular cut. Across
a point s=∆ exp(iθ) belonging to the circle, the disconti-
nuity is easily computed from (14) (noticing that the cir-
cular cut is contained inside the domain of validity of this
representation) to be

f
1
2
0 ((∆− ε)e

iθ)−f
1
2
0 ((∆+ ε)e

iθ)

=
2i

4m2π+4 (m
2
K−m

2
π) sin

2 θ
2

×

∫ 4m2π+4∆ sin2 θ2
4m2π

dt′

{√
3

3
Im g00(t

′)

−
3
√
2

4
(−2∆eiθ+2Σ− t′) Im g11(t

′)+ · · ·

}
. (21)

This expression highlights the region of the circle where
one is allowed to compute the discontinuity using ChPT,
i.e., replacing the imaginary part of the ππ→KK̄ par-
tial waves by their chiral expansions (as done in [17, 18]).
The chiral expansion is expected to converge in a range√
t′ � 0.5 GeV: this corresponds to the forward portion of
the circle with −52◦ � θ � 52◦. Similar expressions can be
derived without difficulty for the discontinuities along the
left-hand cuts on the real axis. Again, it is easy to see that
ChPT is applicable over a small portion of the cut and not,
in particular, close to the point s= 0.

2 The lightest scalar resonance
in πK scattering

Phase-shift analyses for πK → πK scattering have been
performed based on high-statistics production experi-
ments in [28, 29]. For instance, Fig. 4 recalls the l= 0 phase
of the amplitude of π+K− → π+K−, Φ0 as a function
of the energy, given in [29]. The phase displays a typical
resonance-like behaviour in connection with theK∗0 (1340),
but no similar behaviour occurs in relation with the lighter
K∗0 (800). In fact, it is difficult to immediately draw any
definite conclusion from these data, since the experimental
information does not quite cover the energy region which
would be of interest for the K∗0 (800) resonance. In order
to decide on the existence of this resonance one must com-
bine the experimental data with theoretical constraints.
Roy–Steiner representations provide such constraints by
embedding information on the analyticity structure, uni-
tarity along the real axis as well as crossing symmetry for
the πK scattering amplitude. As discussed above, one such
representation yields f

1/2
0 (s) in the complex region of s

shown in Fig. 3, which lies on the first Riemann sheet with
respect to all the cuts. Let us recall here the well-known
result that the elastic S matrix element

S
1
2
l (s) = 1−2

√
(m2+− s)(s−m

2
−)

s
f
1
2
l (s) (22)

exhibits a resonance as a zero on the first sheet as well as
a pole on the second sheet. This fortunate property stems
from the unitarity relation which can be recast, using the
analyticity properties, as an equation between the values of
the amplitude on both sides of the cut

f
1
2
l (s− iε)−f

1
2
l (s+ iε)

= 2i

√(
s−m2+

) (
s−m2−

)
s

f
1
2
l (s+ iε)f

1
2
l (s− iε) .

(23)

Fig. 4. Experimental values for the S-wave phases of the am-
plitude for charged πK scattering measured in [29]
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This relation holds for real values of s along the elastic cut
below the first inelastic threshold. It can be translated into
a relation for the S matrix

S
1
2
l (s+ iε)S

1
2
l (s− iε) = 1 . (24)

Introducing a variable z =−
√
m2+− swhich maps the first

sheet of the s-plane onto the upper part of the z-plane, we
can rewrite (24) as

S
1
2
l (z)S

1
2
l (−z) = 1 . (25)

The relation (25) holds on a finite portion of the posi-
tive real axis. By analytic continuation, it must also hold
everywhere in the complex z-plane. This relation immedi-
ately shows that a resonance pole z0 on the second Rie-
mann sheet [ Im (z0) < 0] is automatically associated to
a zero at −z0, which lies on the first sheet. Computing
S
1/2
0 (s) from the RSb representation described above for
the central values of our experimental input, we find that it
does have a zero, S

1/2
0 (s0) = 0, with

s0 = 0.356+ i ·0.366GeV
2 . (26)

The global shape of the S matrix for complex values of
s is illustrated in Fig. 5, which displays the squared modu-
lus of S

1/2
0 (s) resulting from our computation. The figure

shows that the modulus is constant and equal to one over
a portion of the real axis (in accordance with unitarity)
and drops when one leaves this axis, eventually becom-
ing zero at s = s0. We notice the similarity of the global
behaviour of the S matrix with the case of an ordinary nar-
row resonance. Indeed, Fig. 6 shows the squared modulus
of the P -wave S matrix computed using the same appa-
ratus, which exhibits the well-known K∗(890) resonance
as a zero. According to these results, the existence of the
K∗0 (800) scalar resonance is established on the same foot-
ing as that of the vectorK∗(890) resonance.
However, one may highlight the difference between the

two situations as illustrated in Fig. 7. In the complex s-
plane are drawn the two lines LR and LI defined as the
curves along which the real and imaginary parts of the l= 0
S matrix vanish respectively (the point s0 corresponds to
the intersection of these two lines). The line LR starts from
the real axis at the point where the phase shift is equal to
π/4 (since Re (SI0 ) = cos(2δ

I
0)). In the case of an ordinary

resonance, the line LI would start from the real axis at the
point where the phase shift reaches π/2, whereas it starts
from a point situated slightly below the elastic cut in the
case of theK∗0 (800).
As stated earlier, the point s0 is located inside the do-

main of validity of the RSb representation. This is illus-
trated in Fig. 8 which shows the one-sigma error ellipse on
s0 computed by varying the parameters describing our in-
put data (see [27] for more details). In addition the figure
shows that s0 is located at about the same distance from
the physical cut as from the circular cut. This feature con-
firms that a representation of the amplitude accounting for
the left-hand cuts correctly is needed in order to determine

Fig. 5. Plot of |S
1
2
0 (s)|

2 for complex values of s (in units of

GeV2), computed from the RSb representation (14)

 

 

  

 

 

Fig. 6. Same as Fig. 5 showing |S
1
2
1 |
2

Fig. 7. Lines LR and LI in the complex s-plane along which

ReS
1
2
0 (s) and ImS

1
2
0 (s) vanish, respectively
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Fig. 8. Position of the κ pole s0 and its one-sigma error ellipse
(in units of m2π). We also show the boundary of the region of
validity of the RSb representation and the left-hand cuts of the
amplitude

s0 in a reliable way. The mass and width of the κ resonance,
as defined from the square root of s0,Mκ+ i ·Γκ/2 =

√
s0,

are then found to be

Mκ = 658±13MeV , Γκ = 557±24MeV . (27)

The errors are rather small and of the same size as the
errors affecting the σ-meson mass and width as obtained
in [12]. This reflects the good quality of the experimental
data used as input (see e.g. Fig. 4) which is exploited in an
optimal way. However, since the point s0 is not located very
far from the boundary of the region of validity, one may
wonder whether a significant uncertainty might be intro-
duced by truncating the partial wave series in the various
integrands. As a matter of fact, this is unlikely, because
the RS representations are expected not to break down in
an abrupt way when the validity boundary is crossed. Let
us consider the diagrams associated with the Mandelstam
regions for πK scattering used to determine the validity
boundary. The st boundary corresponds to setting the in-
variants (q1+ q2)

2 and (q3+ q4)
2 to their threshold values;

see Fig. 1. The actual dispersive representation of the am-
plitude is expected to involve weight functions that should
be suppressed at threshold (in particular due to chiral
symmetry) and that should be peaked for values of (q1+
q2)
2 and (q3+ q4)

2 in the resonance region (correspond-
ing to an effectively more distant Mandelstam boundary).
Because of these effects, crossing the validity boundary
should affect the accuracy of the Roy–Steiner representa-
tions in a mild way: one has to venture much deeper into
the complex plane to notice a significant breakdown of the
dispersion relations. As an illustration, we have computed
the position of the zero, s0, using the fixed-t Roy–Steiner
representation. Using this dispersion relation significantly
outside of its strict domain of validity, we have found a dif-
ference of only 0.5% in the pole position in comparison
with the result from the RSb representation.
In Table 1 we summarise the results of a few other de-

terminations of the K∗0 (800) resonance parameters in the
recent literature. These are derived from input experimen-
tal data on πK scattering, except for the result of Aitala

Table 1. The mass and width of the K∗0 (800) from our work
and some other recent determinations. [7, 16, 23] quote Breit–
Wigner parameters from which we have computed the corres-
ponding pole positions

Mκ (MeV) Γκ (MeV)

This work 658±13 557±24

Zhou and Zheng [18] 694±53 606±89
Jamin et al. [20] 708 610
Aitala et al. [7] 721±19±43 584±43±87
Pelaez [21, 22] 750±18 452±22
Bugg [9, 10] 750+30−55 684±120

Ablikim et al. [23] 841±23+64−55 618±52+55−87
Ishida et al. [16] 877+65−30 668+235−110

et al. [7] which is based on D→ Kππ decays and the
one from Bugg [11] who uses the same data combined
with BESS II data on J/ψ→ K∗(890)Kπ. Our results
are compatible with those of [17, 18] where one has also
employed dispersive methods. The mass which we find is
lighter than in previous calculations. A similar effect was
observed in [12] in the case of the σ, and it was traced to
a more complete treatment of the left-hand cuts in Roy-
type representations.

3 Summary and outlook

It is quite likely that many exotic mesons (or baryons)
exist in QCD which are not seen simply because they have
a very large width. In the case of the κ meson, we have
demonstrated that it is perfectly possible to prove the ex-
istence of such particles by combining experimental data
with some general theoretical constraints. Previously, the
same conclusion was derived in the case of the σmeson [12].
Amajor advantage of the methods used here and in [12] lies
in the control of their range of validity as one moves away
from the physical energy region into the complex plane.
No such control exists for naive parametrisations of the
Breit–Wigner type or even for more sophisticated ones like
chiral-unitarised approaches.
The πK scattering matrix in the S wave has been com-

puted in the complex energy plane using a Roy–Steiner
dispersive representation. It is worth noting that in such
a representation, one must inject much more experimen-
tal information than just the S-wave phase shifts (such
as data on other πK and crossed-channel partial waves
and the high energy behaviour). Moreover, the available
S-wave data does not cover the lower energy range. In this
region, unitarity provides extra information which can be
combined with the RS representation to compensate for
the lack of experimental data. The combination of experi-
mental and theoretical information leads to a zero of the S
matrix on the first sheet, and therefore a pole on the second
one, which confirms the existence of the K∗0 (800) reson-
ance. We have observed that the behaviour of the S matrix
when the energy variable s becomes complex is qualita-
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tively the same as in the case of a narrow resonance: the
S matrix makes no difference between an ordinary and an
exotic meson.
In [12] the following results were found for the σ meson:

Mσ = 441
+16
−8 MeV , Γσ = 544

+18
−25MeV . (28)

Comparing Mκ and Mσ suggests that the κ meson is
the S = 1 partner of the σ meson. This tends to dis-
favour the scenario proposed by Minkowski and Ochs [40]
in which the σ contains a sizable glueball component.
If one formed a nonet by associating together the σ,
the κ, the iso-singlet f0(980) and the iso-triplet a0(980),
its mass pattern would be clearly at variance with the
usual QQ̄ picture (which is also what is expected in the
large Nc limit of QCD). In contrast, it would be con-
spicuously similar to the pattern predicted by Jaffe from
a Q2Q̄2 picture a long time ago [5]. The correct values
for the widths seem more difficult to reproduce in simple
quark models [41]. Many different models, multiplet as-
signments and interpretations of the light scalar mesons
have been proposed in the literature (see [42] for a review).
In the future, model-independent information is expected
to be obtained from lattice simulations of QCD, which
start to provide quantitative predictions on scalar mesons
and should give further insights into this long-standing
issue [43].
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14. A. Nogová, J. Pǐsút, P. Prešnajder, Nucl. Phys. B 61, 438
(1973)
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